If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-10y=21
We move all terms to the left:
y^2-10y-(21)=0
a = 1; b = -10; c = -21;
Δ = b2-4ac
Δ = -102-4·1·(-21)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{46}}{2*1}=\frac{10-2\sqrt{46}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{46}}{2*1}=\frac{10+2\sqrt{46}}{2} $
| (4x+5)+(2x-10)+(x+5)+X=360 | | 5x6÷2=2x6÷4 | | x+15=1.5x | | X2/9=x-6 | | -4(x-2)=2(4-3x)-6 | | x-2/3=x-1/4 | | 1/3x=1/2x-1 | | 2/5x=1/2x-2 | | x+1/2=2x+6/8 | | 5y-6=-3y+10 | | 7(5b+-6)=-63 | | 3x=48/6 | | 1/2x+1/6x=1-7/3x | | 5(7)^5x=60 | | (x+7)(x-7)=-3 | | y^2-10y-29=0 | | 3(b+7)=3(b-3) | | 3x-3(2x+3)=7-5x | | 6y=5y-11 | | x^2+x-5120=0 | | x^2+2x-5120=0 | | (x+1/4)^2=(√31/16)^2 | | 2x-7/3x+2=4 | | (x-4)^2=168 | | 3(p-3)=4p | | -8+4m=23 | | 7+15x=100 | | -8+4m=m | | -34+9y+9=(4y-2)-4 | | 4(c-2)+9=6+c-5 | | (2/x)-5/3=12/x | | 4y^+20y=0 |